
A Study of the Viability of Exploiting Memory Content

Similarity to Improve Resilience to Memory Errors

Scott Levy1, Kurt B. Ferreira2, Patrick G. Bridges1, Aidan P. Thompson2, and
Christian Trott2

1Department of Computer Science, University of New Mexico,
{slevy|bridges}@cs.unm.edu

2Sandia National Laboratories∗, {kbferre|athomps|crtrott}@sandia.gov

Abstract

Building the next-generation of extreme-scale distributed systems will require overcoming sev-

eral challenges related to system resilience. As the number of processors in these systems grow,

the failure rate increases proportionally. One of the most common sources of failure in large-scale

systems is memory. In this paper, we propose a novel runtime for transparently exploiting mem-

ory content similarity to improve system resilience by reducing the rate at which memory errors

lead to node failure. We evaluate the viability of this approach by examining memory snapshots

collected from eight HPC applications and two important HPC operating systems. Based on the

characteristics of the similarity uncovered, we conclude that our proposed approach shows promise

for addressing system resilience in large-scale systems.

∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

1

1 INTRODUCTION

1 Introduction

Building the next-generation of extreme-scale distributed systems will require overcoming several chal-

lenges related to system resilience. As we aggregate larger numbers of processors to construct more

powerful systems, the rate at which failures occur increases proportionally [35]. As the rate of failures

increases, more time is spent preparing for and recovering from failures and less time is spent doing

useful work. This effect is especially pronounced in systems that employ traditional checkpoint/restart

techniques, as the entire computation has to be rolled back each time a failure occurs [10,13].

Memory-related errors are one of the most frequently observed sources of node failure in large-

scale distributed systems [35]. Moreover, power concerns may exacerbate this problem as we consider

deploying low voltage memory chips that are more prone to error [7].

Effective fault tolerance strategies in extreme-scale systems may also need to address hardening

operating systems against memory failures [14]. If every region of memory is equally likely to experience

an uncorrectable error, we would expect to see relatively few errors in kernel memory because it

typically occupies a much smaller memory footprint than the application. However, recent evidence

suggests that kernel memory may be more prone to memory errors than other regions of memory [20].

In this paper, we present a novel approach for using content similarity in the memory of HPC

systems to improve resilience to uncorrectable memory errors. We then evaluate the viability of

this method by examining: (a) the application memory of eight important and representative HPC

workloads running on a Cray XE6 supercomputer; and (b) regions of kernel memory for two well-

known operating systems used in HPC. By carefully considering the characteristics of these memory

regions, we estimate the relative costs and benefits of this approach.

The remainder of this paper is organized as follows: in the next section, we describe the approach

used for this similarity analysis. Then in Section 3, we describe our test methodology and platform

used. Section 4 presents our memory similarity results for each of our HPC workloads. Also, this

section further analyzes our representative applications to develop an understanding of the costs of

Exploiting Memory Similarity for Improved Resilience 2

2 PROPOSED APPROACH

maintaining this similarity information throughout the lifetime of an application. In Section 5, we

review related work in the area and place the contribution of our work in that context. Finally in

Section 6, we summarize our results and outline future avenues of promising research.

2 Proposed Approach

ASC Sequoia
Marquee
Performance
Codes [26]

AMG
A parallel algebraic multigrid solver for linear systems arising from
problems on unstructured grids [17].

IRS
Implicit Radiation Solver. Solves the radiation transport equa-
tion by the flux-limited diffusion approximation using an implicit
matrix solution [24].

DOE Production
Applications

CTH
A multi-material, large deformation, strong shock wave, solid me-
chanics code [28]

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Simulator. A
classical molecular dynamics simulator [33].

Mantevo Mini-
Applications
[18,32]

HPCCG
Designed to mimic the finite element generation, assembly and
solution for an unstructured grid problem.

phdMesh
Parallel Heterogeneous Dynamic Mesh. An application designed
to mimic the contact search applications in an explicit finite ele-
ment application.

Miscellaneous
Applications

SAMRAI
Structured Adaptive Mesh Refinement Application Infrastructure.
Designed to enable the application of structured adaptive mesh
refinement to large-scale multi-physics problems [25].

Sweep3D
Solves a 1-group time-independent discrete ordinates (Sn) 3D
cartesian (XYZ) geometry neutron transport problem [27].

Table 1: A brief summary of HPC applications used

We propose to exploit memory content similarity to allow applications to recover from uncorrectable

DRAM ECC errors that would otherwise lead to application termination or node failure. The basic

idea is that when a memory error occurs on a page that is similar to one or more other pages in the

Exploiting Memory Similarity for Improved Resilience 3

2.1 Page Classification 2 PROPOSED APPROACH

address space of an application, we can use information about the page’s similarity to reconstruct the

contents of the damaged page without needing to terminate the affected application or restart it from a

known good state. Our approach consists of two components: (a) classifying pages to identify memory

content similarity; and (b) using the memory content similarity we identify to reconstruct pages that

suffer memory errors.

2.1 Page Classification

We begin by placing each page in the address space of an application into one of four categories:

• duplicate pages : pages whose contents exactly match one or more other pages and include

at least one non-zero byte.

• zero pages : pages whose contents are entirely zero.

• similar pages : pages that (a) are not duplicate or zero pages; and (b) can be paired with

at least one other page in application memory such that the difference between the two can be

represented by a cx bsdiff [36] patch that is smaller than a tunable threshold. The results in

this paper were collected using a threshold of 1024 bytes.

• unique pages : pages that do not fall into any of the preceding three categories.

In practice, we can treat zero pages as duplicate pages. If a memory error occurs on a zero page,

reconstruction of the damaged page is straightforward. However on some systems, zero pages may be

an artifact of memory allocation and may not represent memory that is actually being used. But if zero

pages represent unused memory, they cannot be the source of memory errors. Therefore, zero pages

can only increase the protective effect of our approach. Nonetheless, because we cannot determine

which zero pages are actually used, our analysis distinguishes between zero pages and duplicate pages.

The result is a possible underestimate of the protective benefit of our approach.

Exploiting Memory Similarity for Improved Resilience 4

2.2 Page Reconstruction 2 PROPOSED APPROACH

2.2 Page Reconstruction

When an uncorrectable ECC error is detected in an x86 system, the memory controller raises a Machine

Check Exception (MCE) in the processor. The consequences of raising an MCE vary by operating

system. Recent versions of Linux attempt to minimize the impact of an MCE by adopting simple

recovery strategies. For example, in the event that the memory is unmapped,1 the hardware page is

poisoned and no other action is required. In the event that none of its recovery strategies is successful,

Linux poisons the hardware page and kills all of the processes that had the faulted page mapped into

their address space [22]. In other operating systems (e.g., the Kitten lightweight kernel [34], older

versions of Linux), raising an MCE crashes a node, forcing the CPU to a halt state.

For each duplicate or similar page, we maintain a description of its reference page(s): the set of

pages in the system that are either duplicated by or similar to the page under consideration. In the

case of similar pages, we also store the appropriate patch data. Because the patches generated by

cx bsdiff are not symmetric, every similar page requires its own patch data. Each time a duplicate

or similar page is written to, we no longer know its relationship to its reference pages. As a result,

we need to update our metadata to reflect the fact that the page must now be treated as unique. To

determine whether these pages are still duplicate or similar after they have been written to, we would

periodically compare each member in the set of unique pages (which includes similar and duplicate

pages that have recently been written to) to other pages in the application’s memory. This would also

allow us to identify new similar and duplicate pages from the set of unique pages.

When a memory error occurs on a similar or duplicate page, we can use the metadata that we

have collected to reconstruct the faulted page. Reconstructing duplicate pages is straightforward.

We simply restore the contents of the damaged page from the contents of one of its reference pages.

For similar pages, the process is only modestly more complex. We reconstruct the damaged page by

applying a patch to one of its reference pages.

1This might happen if, for example, the MCE was raised by a memory scrubber. However, it is not clear that this is
a common scenario [20].

Exploiting Memory Similarity for Improved Resilience 5

3 EVALUATION

3 Evaluation

To evaluate the viability of this approach, we considered the memory of several important HPC work-

loads and two key operating systems. By analyzing application and kernel memory, we were able to

characterize memory content similarity in the system.

We examined memory in systems running the eight HPC workloads described in Table 1 using

MPICH on 8 nodes of a Cray XE6 supercomputer. We used 8 processes on each node for a total of

64 MPI ranks. This set of applications is representative of several important workloads. In particular,

three of these applications, AMG, IRS and LAMMPS, are taken from the ASC Sequoia Marquee

Performance Codes: a set of codes assembled expressly to ensure that key workloads would perform

well on the Sequoia supercomputer at Lawrence Livermore National Laboratory. Additionally, our set

of applications includes two important U.S. Department of Energy (DOE) production applications:

CTH and LAMMPS.

In addition, we examined similarlity in the contents of kernel memory for two operating systems:

Linux 2.6.37 (a full-weight kernel) and Kitten (a lightweight kernel) [34]. Although lightweight kernels

have been shown to have superior performance characteristics [31], the generality and familiarity of

full-weight kernels enable them to dominate today’s largest machines [3, 29,30].

3.1 Data Collection

3.1.1 Application Memory

We built a library, libmemstate, to collect snapshots of the applications’ memory and linked it against

each of the target applications. The MPI Profiling layer allows us to interpose libmemstate in all calls

by the application to MPI Init and MPI Finalize. By intercepting the call to MPI Init, libmemstate

is able to take a snapshot of the application’s memory after initialization but before the application

has started execution. To generate a snapshot of the application’s memory, libmemstate reads the

Exploiting Memory Similarity for Improved Resilience 6

3.1 Data Collection 3 EVALUATION

/proc/<pid>/maps file provided by Linux to gather information about the application’s address space.

Based on the information it gathers, libmemstate writes a copy of the address space to stable storage.

After the initialization snapshot is complete, libmemstate sets a timed signal (SIGALRM) that allows

it to take snapshots of memory periodically as the application runs. We collected the data in this paper

by configuring libmemstate to capture a memory snapshot every 60 seconds of application execution

time. The process is similar when the application calls MPI Finalize. The MPI Profiling layer

interposes a call to libmemstate. This allows libmemstate to take a finalization memory snapshot

and disable its timer.

Each snapshot includes all of the application’s heap, stack and anonymous memory. We excluded

memory-mapped files because for the applications that we considered, the majority of pages that

correspond to memory-mapped files are mapped read-only. The most straightforward way to recover

these pages is to re-read their contents from the backing store. As a result, our approach offers little

additional protective benefit. While the pages that are backed by stable storage can be used as reference

pages for other pages in application memory, we excluded these pages to simplify our analysis.

3.1.2 Kernel Memory

To collect data on kernel memory similarity, we used the checkpointing functionality of the Palacios

Virtual Machine Monitor (VMM) [23] to capture the entire memory state of the guest periodically

(once every 60 seconds for the data presented in this paper). Specifically, we used Palacios to capture

snapshots of both Linux and Kitten guests running a single rank of each of six workloads.

After capturing the guest’s memory state, we required additional information to identify the regions

of kernel memory within the guest memory footprint. We used different approaches for this purpose

in Kitten and Linux. In Kitten, a region of low memory (by default, 64 MB) beginning at address

0 is reserved for kernel use. During the initial boot sequence, a very simple allocator (bootmem) is

used to manage this memory. Near the end of the boot sequence, management of all unused kernel

memory is transferred to a buddy allocator. By instrumenting the buddy allocator, we were able to

Exploiting Memory Similarity for Improved Resilience 7

3.2 Data Analysis 3 EVALUATION

determine which pages of kernel memory were in use at any given instant. This allowed us to extract

the relevant portions of the guest’s memory footprint. Although this approach fails to capture the

memory allocated by the bootmem allocator, it does allow us to identify all of the memory allocated

after the kernel memory subsystem has been initialized.

In Linux, every page of physical memory is represented by an instance of struct page. The

flags field within each of these structures allowed us to determine characteristics about the page.

In particular, pages that are managed by a slab allocator have the PG slab bit set. Based on this

structure, we built a kernel module that allowed us to traverse physical memory and determine which

pages belonged to a slab cache.2 Although this approach does not capture all of kernel memory (and

captures some memory that may not be in active use), it does capture all of the memory allocated by

kmalloc. Moreover, given the complexity of memory allocation in the Linux kernel, this is a relatively

straightforward approach that allows us to approximate the similarity characteristics of kernel memory.

3.2 Data Analysis

We analyzed the set of memory snapshots that we collected of the applications and kernels offline. For

each snapshot, we walked through the virtual address space from low addresses to high, categorizing

each page of memory into one of the four categories described above: (a) duplicate; (b) similar; (c) zero;

or (d) unique.

3.2.1 Duplicate Pages

Naively, identifying duplicate pages is a O(n2) operation. To reduce this cost, we compute the MD5

sum of each page and use it as the key of a hash table. Each collision represents a duplicate page.

Although it is conceivable that two or more different pages could yield the same MD5 sum, we assume

that for the applications that we considered the contents of application memory are not adversarial.

2Although the SLAB allocator has been largely replaced by the more efficient SLUB allocator [9], the “slab” nomen-
clature still predominates.

Exploiting Memory Similarity for Improved Resilience 8

3.2 Data Analysis 3 EVALUATION

As a result, we can use an analogy to the birthday problem [19] to show that the likelihood of such an

event is exceedingly small (i.e., ≈ 10−14) even for large memory snapshots [39].

3.2.2 Similar Pages

As with identifying duplicate pages, the naive approach to identifying similar pages is an O(n2) op-

eration. To mitigate this cost, we use an approach inspired by the Difference Engine [16]. Instead of

computing patches between every pair of pages, we attempt to identify a tractably small set of pages

for each candidate page that are likely to be similar to it.

During initialization, we randomly choose four locations in a 4kB page of memory. For each page

that we examine, we collect one 128-byte block at each of these locations. Each of these blocks is used

as a signature of the page contents.

As we examine each candidate page in the address space of an application, we identify pages that

match one or more of the candidate page’s signatures. In the event that more than one page matches a

single signature we choose the page nearest to the candidate page. This approach identifies up to four

pages that may be similar to the current candidate page. In addition to these pages, we also consider

the page that occupies the next lowest virtual address in use in the application’s address space. In all,

this approach identifies as many as five pages that are likely to be similar to the candidate page.

We then compute a patch between the current candidate page and each member of the set of likely

similar pages. If any patch is smaller than a threshold, in this case 1024 bytes, we mark the current

candidate page as similar. Because cx bsdiff does not generate symmetric patches, observing a single

patch that falls below our threshold is sufficient to categorize only a single page as similar. Therefore,

we also compute the reciprocal patch of each of the pages in the set of likely similar pages to determine

whether any of them should also be marked as similar.

This is a statistical, heuristic approach (cf. [16]). Although there may be methods that would yield

greater numbers of similar pages by generating smaller patches, the fraction of similar pages we identify

using this approach is a lower bound on the total number of similar pages in application memory.

Exploiting Memory Similarity for Improved Resilience 9

3.3 Repeatability 3 EVALUATION

3.2.3 Zero Pages

Identifying zero pages is a straightforward process that leverages the process of identifying duplicate

pages. Initially, we make no effort to distinguish zero pages from any other page; we insert them into

the duplicates hash table as we would any other page. By precomputing the MD5 sum of a 4kB zero

page, we can then identify the zero pages as the set of pages that were stored in the duplicates hash

table using the zero page MD5 sum as a key.

3.2.4 Unique Pages

Unique pages are those pages that fall outside of the criteria for the preceding three categories. How-

ever, we note that this is not a rigid definition; it is highly dependent on our choice of patch size

threshold. In particular, increases to the patch size threshold will increase the number of similar pages

and decrease the number of unique pages. With a sufficiently large patch size threshold, we could, in

principle, transform all of the unique pages into similar pages. In subsequent sections, we examine the

tradeoffs involved in changing the patch size threshold.

3.3 Repeatability

Non-determinism exists in our methods for collecting and analyzing data. With respect to data analy-

sis, the source of non-determinism is explicit: as described above, we randomly choose the locations of

four signatures. To estimate the variation introduced by this approach, we ran our analysis ten times

on the memory snapshots collected for LAMMPS, randomly choosing the four signature locations each

time. The number of similar pages varied by less than 0.23% across all of the snapshots (excluding

the initialization and finalization snapshots) we collected.

With respect to data collection, the timers we use to determine the interval between memory

snapshots are not precise. As a result, from run to run we cannot be sure that the snapshots are

taken precisely relative to the application’s progress. Therefore, it is unlikely that any two sequences

Exploiting Memory Similarity for Improved Resilience 10

3.3 Repeatability 3 EVALUATION

of memory snapshots will agree on the exact contents of memory at any given time. Moreover, there

may be some variability in the layout of each application’s address space that may effect the content

of the pages in an application’s memory.

To evaluate the variability in our data collection mechanism, we collected memory snapshots for ten

separate runs of LAMMPS. We then categorized the pages for each sequence of memory snapshots.

To control for the variability introduced by our analysis scripts, we fixed the locations of the four

signatures used in our similarity detection algorithm. We observed that the percentage of similar

pages varied by up to 27%, ranging from 15.6% to 20.0% of application memory.

 0

 20

 40

 60

 80

 100

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

P
e

rc
e

n
t

o
f

m
e

m
o

ry
 p

a
g

e
s

0 bytes
(duplicates)

1-127
bytes

128-255
bytes

256-511
bytes

512-1023
bytes

1024-2047
bytes

2048-4095
bytes

Figure 1: The percent of similar pages for rank 0 as a function of patch size threshold. A patch size
of 4096 (a redundant copy of page with no actual similarity) will take all applications to 100%

Exploiting Memory Similarity for Improved Resilience 11

4 RESULTS

Figure 1 demonstrates one possible source of this variation. For LAMMPS, a significant majority

of the patches are between 1024 and 2047 bytes in size, just larger than our patch threshold of 1024

bytes. As a result, small changes in the content of a page (e.g., because the memory snapshots across

executions are not synchronized relative to execution time) have the potential to cause many pages to

be recategorized.

4 Results

4.1 Application Memory

In this section, we present the results of our examination of application memory. The goal of our ex-

amination is to develop an understanding of the potential benefits and costs of our proposed approach.

4.1.1 Benefits

The principal benefits of our approach will be expressed in terms of the degree and extent to which

we are able to protect application memory against uncorrectable errors. To characterize this benefit,

we examine the prevalence of similar and duplicate pages in application memory. In practice, we can

also protect zero pages. However, because zero pages may be an artifact of memory allocation or other

platform features, we exclude them from our consideration of our approach’s potential benefits.

Overview Figure 2 presents the fraction of each application’s address space that falls into each of

the four categories described above. Excluding the initialization and finalization snapshots, this figure

presents the results for the memory snapshot for rank 0 that contains the smallest fraction of similar

and duplicate pages.

The first observation we make is that the memory of all of the applications is comprised of a

significant fraction of pages that can be protected with our technique. For five of the applications

(AMG, IRS, CTH, HPCCG and phdMesh), more than than 35% of the pages in their memory are

Exploiting Memory Similarity for Improved Resilience 12

4.1 Application Memory 4 RESULTS

 0

 20

 40

 60

 80

 100

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

P
e

rc
e

n
t

o
f

m
e

m
o

ry
 p

a
g

e
s

Duplicate

Similar

Zero

Unique

Figure 2: Page categorization within Rank 0 for each application. As discussed in Section 3.1, we
collected memory snapshots every 60 seconds of application execution time, for a total of 7-11 snapshots
per workload. This data represents the page categorization for the memory snapshot that contained
the smallest fraction of similar and duplicate pages.

Exploiting Memory Similarity for Improved Resilience 13

4.1 Application Memory 4 RESULTS

similar or duplicate pages. In no case do similar and duplicate pages comprise less than 20% of

application memory.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360

P
e

rc
e

n
t

o
f

m
e

m
o

ry
 p

a
g

e
s

Duplicate Pages

Similar Pages

Zero Pages

Unique Pages

Application Time (seconds)
AMG

Application Time (seconds)
SAMRAI

Application Time (seconds)
Sweep3D

Figure 3: Three temporal behaviors observed in all our applications considering only similar and
duplicate pages; Stable, the most commonly observed pattern, represented here by Sweep3D but also
observed with LAMMPS, IRS, HPCCG, and phdMesh; Noisy, represented here by SAMRAI, but also
observed with CTH; and, Dynamic, observed with AMG.

Temporal Behavior We next look at the behavior of memory content similarity over time. For the

applications that we considered, we observe three distinct temporal trends in the fraction of similar

and duplicate pages: (a) Stable; (b) Noisy; and (c) Dynamic. Examples of the behavior that is

characteristic of each of these categories are shown in Figure 3. LAMMPS, IRS, HPCCG, phdMesh

and Sweep3D constitute the temporally stable category. Excluding the initialization and finalization

snapshots, the virtual address space of each these applications includes a stable fraction of duplicate

and similar pages. In contrast, the fraction of similar and duplicate pages in the memory of CTH and

SAMRAI is more erratic. They show significant fluctuations in the number of duplicate and similar

pages in their virtual address spaces over the lifetime of the application. For example, the number

of duplicate pages in SAMRAI spikes twice during this particular run; at one point the number of

duplicate pages nearly triples. CTH exhibits similar, but less pronounced, noisy behavior. Early in

its execution, the number of duplicate pages drops by more than 10%. Although the snapshots of

Exploiting Memory Similarity for Improved Resilience 14

4.1 Application Memory 4 RESULTS

these applications captured only a handful of deviations, it suggests that the memory contents of

these applications may be more dynamic and unpredictable than the other applications we considered.

Lastly, AMG memory exhibits significantly different behavior in this regard than any of the other

applications. For roughly the first half of its execution, the fraction of duplicate and similar pages in

the memory of AMG steadily decreases before stabilizing for the remainder of its run.3

To summarize, for the majority of the workloads tested, the fraction of similar and duplicate

pages was temporally stable. Only in SAMRAI, CTH, and AMG did the extent of similarity change

significantly over the lifetime of the application. Because the protective benefit of our approach is

highly dependent on the fraction of similar and duplicate pages in application memory, these data also

suggest that for many applications the protective benefit of our proposed approach will be stable over

the lifetime of the application.

NUMA We ran all of our tests of application memory on a Cray XE6 system. Because each of the

XE6 compute nodes uses a NUMA architecture, we may be able to increase similarity by considering

memory across processes.

Each compute node of the XE6 contains two 8-core AMD Opteron Magny-Cours processors. Each

Magny-Cours processor is divided into two NUMA domains. Each NUMA domain is comprised of four

cores [37]. We used the default MPICH layout method which results in SMP-style placement of MPI

ranks. Based on this architecture, we were able to group our memory snapshots by rank to effectively

examine content similarity within a NUMA domain for each application. The results of considering

memory across a NUMA domain are shown in Table 2.

Expanding the scope of memory significantly increased the number of duplicate pages in memory of

most of the applications we considered. For example, in LAMMPS, the number of duplicates increased

by 148.6%. However, the number of similar pages decreased by nearly an equal amount for every

3We also observe that AMG is the only application that allocates significant quantities of memory after MPI initial-
ization.

Exploiting Memory Similarity for Improved Resilience 15

4.1 Application Memory 4 RESULTS

Application
Rank 0-3 NUMA Domain ∆ ∆ % Increase

Similar # Duplicate Total # Similar # Duplicate Total Similar Duplicate Total

AMG2006 269748 185119 454867 222675 234162 456837 -47073 49043 0.4 %

CTH 27688 40507 68195 4691 63583 68274 -22997 23076 0.1 %

IRS 15085 55235 70320 11210 59320 70530 -3875 4085 0.3 %

LAMMPS 57922 14299 72221 36770 35541 72311 -21152 21242 0.1 %

SAMRAI 7841 4003 11844 4451 7437 11888 -3390 3434 0.4 %

HPCCG 297155 557443 854598 76327 778302 854629 -220828 220859 0.0 %

phdMesh 192590 8005 200595 188845 13921 202766 -3745 5916 1.1 %

Sweep3D 3748 3376 7124 965 6183 7148 -2783 2807 0.3 %

Table 2: Effect of considering the nodes in a single NUMA domain collectively. Although the number
of duplicate pages increases significantly when all of the application memory in a NUMA domain is
considered, these gains are almost entirely offset by reductions in the number of similar pages.

application we considered. As a result, processing the memory in a NUMA domain collectively yielded

very modest increases in the total fraction of similar and duplicate pages.

The result is that, for many applications, there may be little incentive to collectively consider

application memory within a NUMA domain. Nonetheless, because the cost of computing and storing

metadata is higher for similar pages than for duplicate pages, there is a tradeoff to be made between

local, similar pages and remote, duplicate pages.

Input Effects In addition to variations among applications, the input description for each applica-

tion has the potential to impact the extent of content similarity. To examine the effect of changing

inputs, we examined the memory of CTH and LAMMPS for several different inputs.

For CTH, we considered two inputs: (a) a model of the detonation of a conical explosive charge;

and (b) a model of a fragmenting pipe. All preceding results for CTH presented in this paper were

obtained using the conical charge input.

Figure 4(a) shows the fraction of similar and duplicate pages for each input. Each colored box rep-

resents the average fraction of similar or duplicate pages over the lifetime of the application (excluding

the initialization and finalization snapshots). The error bars represent the minimum and maximum

fraction of each category observed over the run. For the fragmenting pipe input, we observed substan-

Exploiting Memory Similarity for Improved Resilience 16

4.1 Application Memory 4 RESULTS

 0

 10

 20

 30

 40

 50

Conical Charge Fragmenting Pipe

P
e

rc
e

n
t

o
f

m
e

m
o

ry
 p

a
g

e
s

Similar Pages Duplicate Pages

(a) CTH

 0

 10

 20

 30

 40

 50

 60

 70

LJ EAM Rhodo SNAP

P
e

rc
e

n
t

o
f

m
e

m
o

ry
 p

a
g

e
s

Similar Pages Duplicate Pages

(b) LAMMPS

Figure 4: The effect of using different inputs on the fraction of similar and duplicate pages observed
in application memory

tially higher percentage of similar pages than for the conical charge input. The relative frequency of

similar and duplicate pages is also noticeably different between the two inputs. For the conical charge

input, there are 60% more duplicate pages than similar pages whereas for the fragmenting pipe input,

there are less than half as many duplicate pages as similar pages.

For LAMMPS, we considered four potentials as input: (a) Lennard-Jones (LJ); (b) Embedded Atom

Model (EAM); (c) Rhodopsin (Rhodo) protein; and (d) SNAP4. All preceding results for LAMMPS

presented in this paper were obtained using the LJ potential.

Figure 4(b) shows that the percentage of similar pages in the SNAP and Rhodo potentials is nearly

twice as large as for the LJ and EAM potentials. Additionally, the fraction of duplicate pages is

substantially lower for the Rhodo input than for the other three inputs.

These results illustrate that content similarity varies not only across applications but also across

inputs to a single application.

4SNAP is a computationally intensive potential that uses the same kernel as the GAP potential [2].

Exploiting Memory Similarity for Improved Resilience 17

4.1 Application Memory 4 RESULTS

4.1.2 Costs

Due to the metadata required, our proposed approach imposes two principal costs: (a) temporal costs;

and (b) storage costs. The temporal costs include the number of CPU cycles that are taken from the

application for metadata maintenance. The need for metadata maintenance is driven by how often

the contents of similar and duplicate pages change. The storage costs include the number of bytes

required to store the necessary metadata. The amount of storage required is largely dependent on the

size of the patches for each of the similar pages.

Modification Behavior The time required to maintain the metadata necessary to make this ap-

proach work will be deducted from the time that the application would otherwise run. The magnitude

of this temporal overhead will depend largely on the frequency with which similar and duplicate pages

are modified. Each time a similar or duplicate page is modified, we no longer know the relationship

between the page and its reference page(s). As a result, we need to update our metadata to account

for this change. The more rapidly that similar and duplicate pages change, the higher the temporal

overhead of managing metadata will be.

Application
Changed Changed Changed Changed Changed

1+ Times 1 Time 2 Times 3 Times 4+ Times

AMG2006 20.8 % 9.9 % 5.4 % 1.7 % 3.8 %

CTH 38.9 % 6.9 % 3.5 % 13.7 % 14.8 %

IRS 32.8 % 18.3 % 0.2 % 0.0 % 14.3 %

LAMMPS 37.6 % 0.5 % 0.6 % 0.5 % 36.0 %

SAMRAI 79.5 % 13.6 % 7.7 % 32.0 % 26.3 %

HPCCG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

phdMesh 21.6 % 6.2 % 1.9 % 0.5 % 13.0 %

Sweep3D 4.1 % 1.7 % 0.7 % 0.0 % 1.8 %

Table 3: Modification behavior of the pages in the memory of Rank 0 that are ever categorized as
similar or duplicate.

Exploiting Memory Similarity for Improved Resilience 18

4.1 Application Memory 4 RESULTS

To estimate how frequently similar and duplicate pages change, we compared the memory contents

across the sequence of snapshots we collected for each application. By hashing each page, we were

able to determine whether a given page in the application’s virtual address space changed from one

snapshot to the next.5 Table 3 shows the modification behavior for all of the pages in application

memory that are ever classified as duplicate or similar.

The data in this table suggests that for most applications, a substantial majority of the similar and

duplicate pages are either read-only/read-mostly or are written to without being modified [12]. For

five of the eight applications (AMG, IRS, HPCCG, phdMesh and Sweep3D), more than 84% of the

similar and duplicate pages are modified either once or not at all.

The modification behavior of HPCCG is particularly striking; a vanishingly small percentage of its

similar or duplicate pages are ever modified. A more detailed examination of HPCCG’s application

memory shown in Figure 5 reveals that the range of the application’s address space occupied by similar

and duplicate pages is almost entirely disjoint from the range occupied by modified pages.

Similar and duplicate pages are confined to the low end of the virtual address space and modified

pages occupy the high virtual addresses. We speculate that because HPCCG is a conjugate gradient

solver, the low end of the virtual address space contains the sparse matrix that is provided as input

(and is never modified) and the high virtual addresses contain the solution vector that is refined on

each iteration.

Although the heat maps for HPCCG appear to tell a coherent story about the source of the

similarity, the same does not hold for the other applications we considered. In general, the pattern of

similarity within the application’s memory appears to reveal little about the source of the similarity.

For example, Figure 6 shows the similarity and modification heat maps for CTH. Although these

figures are not without structure, reasoning about the source of the similarity based on these plots

is challenging. The heat maps for the other six applications (IRS, Sweep3D, AMG, SAMRAI, and

5This approach underrepresents the frequency of page modifications because it does not necessarily account for
multiple modifications if they occur between memory snapshots.

Exploiting Memory Similarity for Improved Resilience 19

4.1 Application Memory 4 RESULTS

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Similarity Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(b) Modification Heat Map

Figure 5: HPCCG Rank 0 address space Similarity and modification heat maps. Due to HPCCG’s
computation pattern, the address space occupied by similar and duplicate pages is almost entirely
disjoint from the range occupied by modified pages

Exploiting Memory Similarity for Improved Resilience 20

4.1 Application Memory 4 RESULTS

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Similarity Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(b) Modification Heat Map

Figure 6: Address space similarity and modification heat maps for CTH. These figures show the
evolution of the memory characteristics of rank 0 over time. Unlike HPCCG, reasoning about the
relationship between these figures and application data structures is challenging. The heat maps
for LAMMPS, IRS, Sweep3D, AMG, SAMRAI, and phdMesh are similarly difficult to reason about.
Identifying the source of similarity will require significant application expertise.

Exploiting Memory Similarity for Improved Resilience 21

4.1 Application Memory 4 RESULTS

phdMesh) are similarly difficult to reason about. This is due in large part to the difficulty of reasoning

about the relationship between application data structures and similarity. We also note that HPCCG

is a mini-application while many of the other workloads that we considered are more complete (and

complex) applications.

Despite these promising results, there are applications that frequently modify similar and duplicate

pages. For example, unlike the other applications that we considered, a majority of the similar and

duplicate pages in the memory of SAMRAI are modified at least once; more than half are modified

three or more times.

Taken as a whole, these results indicate that similar and duplicate pages are comprised largely of

read-only and read-mostly data. As a result, the metadata associated with these pages need only be

infrequently updated. This evidence suggests that, for many applications, the overhead of our proposed

approach will be manageable and commensurate with its protective effect.

Patch Size Threshold The patch size threshold represents a trade-off between the number of pages

that are similar and the quantity of metadata that must be maintained. A threshold of 1024 bytes

strikes a conservative balance between maximizing similarity and minimizing metadata.

For six of the eight applications that we considered, the metadata associated with 1024-byte thresh-

old would occupy less than 1.5% of the application memory. The metadata for AMG and phdMesh

would occupy a slightly larger, but still modest, fraction (4.0% and 5.8%, respectively) of the appli-

cation’s memory. By changing the patch size threshold, we can strike a different balance between the

number of similar pages and the size of the associated metadata.

Figure 7 shows the fraction of similar and duplicate pages as a function of metadata size for each of

the applications that we considered. The slope of the curves represents the ratio of cost to benefit. For

applications like AMG, LAMMPS and phdMesh, we can extract significant similarity with a modest

increase in metadata. In particular, for phdMesh, if we allow the metadata to occupy even a small

fraction of application memory we see dramatic gains in the number of similar pages. IRS, Sweep3D

Exploiting Memory Similarity for Improved Resilience 22

4.1 Application Memory 4 RESULTS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
t

o
f

S
im

ila
r

a
n

d
 D

u
p

lic
a

te
 P

a
g

e
s

Metadata Size (percent of application memory)

AMG
phdMesh
LAMMPS

1024 byte threshold

(a) AMG, phdMesh, and LAMMPS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
t

o
f

S
im

ila
r

a
n

d
 D

u
p

lic
a

te
 P

a
g

e
s

Metadata Size (percent of application memory)

IRS
Sweep3D
SAMRAI

1024 byte threshold

(b) IRS, Sweep3D, and SAMRAI

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
t

o
f

S
im

ila
r

a
n

d
 D

u
p

lic
a

te
 P

a
g

e
s

Metadata Size (percent of application memory)

CTH
HPCCG

1024 byte threshold

(c) CTH and HPCCG

Figure 7: The percent of similar and duplicate pages as a function of metadata size. Figure 7(a) shows
the three applications for which the cost of increasing the patch size is modest. Figure 7(b) shows the
three applications for which increasing the patch size comes at a higher cost. Figure 7(c) shows the
applications for which the cost of increasing the patch size is quite small. On each of the curves, a
solid circle indicates the point on the curve that corresponds to a patch threshold of 1024 bytes.

and SAMRAI represent applications for which the benefits come at a higher cost. Finally, in the case

of CTH and HPCCG, increasing the patch size increases the metadata by a very small amount. There

are two principal reasons for this behavior. First, the patch sizes for these two applications happen to

be quite small. As shown in Figure 1, most of the patches for these two applications are smaller than

256 bytes. Second, the memory of these applications are dominated by pages that are not suitable for

Exploiting Memory Similarity for Improved Resilience 23

4.2 Kernel Memory 4 RESULTS

patching: zero pages for CTH; duplicate pages for HPCCG. Because there are a small number of small

patches, increasing the patch size requires very little additional metadata for these two applications.

4.2 Kernel Memory

In this section, we examine similarity in kernel memory. Although the case for resilient operating

systems is still emerging [14], we discuss why these results are promising for our proposed approach.

4.2.1 Similarity Overview

Figures 8(a) and 8(b) shows the composition of kernel memory for two important operating systems:

Linux (a heavyweight OS) and Kitten (a lightweight OS). The data for each operating system represents

the snapshot that exhibits the smallest extent of similarity. These data were collected while a user

process was running one of six workloads. For Kitten, we considered all of the pages of kernel memory

whose contents are ever managed by the buddy allocator. For Linux, we considered all of the kernel

memory that is in a slab allocator at any point during the application’s execution.

The first observation we make is that both Linux and Kitten have a very large number of similar

pages. Also, the kernel memory of both operating systems contains very few duplicate pages. This

result is consistent with how the OS uses this memory; the majority of the state maintained by these

OSs is comprised of table-based structures containing objects such as page table mappings. Given the

nature of page tables, we would expect to find large numbers of similar pages in memory allocated for

page table data structures. For x86 processors, each element in the page table hierarchy occupies a

full 4kB page of memory even if only a handful of pages are mapped in the referenced region of virtual

memory. As a result, page table data structures tend to be very sparse. Because the difference between

any two sparse pages can be compactly represented, our approach will identify significant similarity

in memory comprised of sparse pages. To empirically validate these observations, we instrumented

Kitten’s buddy allocator to track the percentage of buddy-allocated memory that is used to store

Exploiting Memory Similarity for Improved Resilience 24

4.2 Kernel Memory 4 RESULTS

page table data structures. For each of the six applications we considered, the minimum observed

percentage of memory that is allocated by the buddy allocator for page tables is shown in Table 4.

This data shows that page table data structures occupy the vast majority of buddy-allocated memory

and thus must also be a significant source of the similarity observed in Figure 8(a).

We also observe that Linux has a much higher fraction of unique pages than Kitten. We speculate

these unique pages comprise some portion of the Linux buffer cache. In contrast, Kitten lacks a kernel

buffer cache and handles buffering in userspace memory. Finally, the fraction of similar pages in Linux

kernel memory is largely unaffected by the application that is running. In contrast, the fraction of

similar pages in Kitten kernel memory varies from application to application.

 0

 20

 40

 60

 80

 100

A
M

G
IR

S
LA

M
M

P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

P
e
rc

e
n
t
o
f
m

e
m

o
ry

 p
a
g
e
s

Duplicate

Similar

Zero

Unique

(a) Kitten

 0

 20

 40

 60

 80

 100

A
M

G
IR

S
LA

M
M

P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

P
e
rc

e
n
t
o
f
m

e
m

o
ry

 p
a
g
e
s

Duplicate

Similar

Zero

Unique

(b) Linux

Figure 8: Page categorization within kernel memory for each kernel using a 1024 byte patch threshhold.
As discussed in Section 3.1, we collected memory snapshots every 60 seconds of application execution
time, for a total of 5-6 snapshots per workload. Each bar represents the page categorization for the
memory snapshot that contained the smallest fraction of similar and duplicate pages. In other words,
these are the data that are least favorable to our proposed approach.

4.2.2 Patch Size Threshold

We now consider the tradeoff between patch size and memory overhead in these HPC operating systems.

Figure 9 shows the fraction of similar and duplicate pages as a function of metadata size. The data

Exploiting Memory Similarity for Improved Resilience 25

4.2 Kernel Memory 4 RESULTS

Application
Minimum Percentage of Buddy-Allocated

Memory Used for Page Tables

AMG2006 93.7 %

IRS 85.3 %

LAMMPS 90.8 %

SAMRAI 90.9 %

HPCCG 97.0 %

phdMesh 93.7 %

Table 4: Minimum percentage of memory allocated by Kitten’s buddy allocator that is used for page
table data structures over the lifetime of each of six workloads.

in this figure were collected during a run of HPCCG; similar results obtain for the other applications.

The slope of these curves represents the ratio of cost to benefit. For Kitten, increasing the patch size

results in a dramatic increase in the fraction of similar pages yet it requires only a very small increase

in metadata size. For Linux, increasing the patch size comes at a greater (but still modest) cost.

For both OSs, only a modest amount of metadata (less than 10%) is required to protect all of kernel

memory using our proposed approach.

4.2.3 Modification Behavior

The cost of maintaining the metadata necessary to correct memory errors will depend, in part, on the

rate at which similar and duplicate pages are modified. To examine the frequency of kernel memory

modification, we again compared the contents of memory pages across the sequence of snapshots we

collected. The results are shown in Table 5. For all of the application on both of the OSs, a significant

majority of similar and duplicate pages are not modified during the application’s execution. For IRS

running on Kitten, the rate of modification is substantially higher than for any other configuration.

However, even in this case, less than one percent of the pages we considered were modified two or more

times. These results are consistent with how these operating systems use memory; they construct tables

Exploiting Memory Similarity for Improved Resilience 26

5 RELATED WORK

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
t
o
f
S

im
ila

r
a
n
d
 D

u
p
lic

a
te

 P
a
g
e
s

Metadata Size (percent of OS memory)

Kitten
Linux

1024 byte threshold

Figure 9: Fraction of similar and duplicate pages as a function of metadata size for Kitten and Linux
running HPCCG. For each plot the data point corresponds to a patch size threshold of 1024 bytes.

that are written once and read many times. The infrequent modification of similar and duplicate pages

in kernel memory suggests that the cost of metadata maintenance will be low.

The results in this section point to the potential of this novel technique to efficiently protect against

uncorrectable memory errors in kernel memory. For both Linux and Kitten, significant similarity

exists in regions of kernel memory. Additionally, similar and duplicate pages in kernel memory are

infrequently modified and can be protected with small volumes of metadata.

5 Related Work

Memory content similarity has been explored for more than a decade. As a result, a significant body

of relevant research has emerged. Although memory content similarity has been examined in several

contexts, the preponderance of the relevant research has been in virtualization. The Disco VMM [6]

included transparent memory sharing which exploited memory content similarity to reduce virtual

Exploiting Memory Similarity for Improved Resilience 27

5 RELATED WORK

Operating System Application
Changed Changed Changed Changed Changed

1+ Times 1 Time 2 Times 3 Times 4+ Times

Kitten AMG2006 0.7 % 0.5 % 0.1 % 0.0 % 0.1 %

IRS 25.4 % 24.8 % 0.1 % 0.0 % 0.4 %

LAMMPS 0.5 % 0.2 % 0.2 % 0.0 % 0.1 %

SAMRAI 1.6 % 0.7 % 0.4 % 0.1 % 0.3 %

HPCCG 0.2 % 0.1 % 0.0 % 0.0 % 0.1 %

phdMesh 1.5 % 1.5 % 0.0 % 0.0 % 0.0 %

Linux AMG2006 2.2 % 1.7 % 0.1 % 0.0 % 0.4 %

IRS 2.3 % 1.5 % 0.1 % 0.0 % 0.7 %

LAMMPS 2.2 % 1.7 % 0.1 % 0.1 % 0.3 %

SAMRAI 2.5 % 1.6 % 0.2 % 0.1 % 0.6 %

HPCCG 1.6 % 1.0 % 0.0 % 0.0 % 0.6 %

phdMesh 1.9 % 1.4 % 0.0 % 0.0 % 0.5 %

Table 5: Modification behavior of the pages in kernel memory that are ever categorized as similar or
duplicate.

machine memory consumption. By intercepting disk requests that use DMA to transfer data into

memory, the Disco VMM consolidated read-only pages (e.g., text segments of applications, read-only

pages in the buffer cache) containing data from the disk across virtual machines. In some cases, this

approach allowed the Disco VMM to significantly reduce memory consumption.

More recently, the VMware ESX server incorporated a broader approach to memory de-duplication [38].

Instead of intercepting disk requests, the server identified all pages in a virtual machine by their con-

tents. When any two pages are found to have the same contents, the pages are consolidated using

copy-on-write. Applying this approach to systems running as many as 10 identical VMs running the

SPEC95 benchmark on Linux, the VMware ESX server is able to reduce memory consumption by

nearly 60%.

Xia and Dinda have advocated broadening the scope of sharing in virtualization to consider in-

tranode sharing [39]. To evaluate the feasibility of this approach, they examined the prevalence of

duplicate pages within and across nodes running several HPC applications. For some workloads (no-

tably HPCCG), they observed that significant inter- and intra-node sharing opportunities exist. Based

Exploiting Memory Similarity for Improved Resilience 28

6 CONCLUSION AND FUTURE WORK

on these promising results, they proposed a Content-Sharing Detection System for exploiting intran-

ode sharing in virtualized environments. Similarly, SBLLmalloc has been used to demonstrate that

memory consumption can be significantly reduced by consolidating duplicate pages in the application

memory of several HPC applications [4].

Most memory de-duplication research has considered consolidating only duplicate pages. However,

the Difference Engine [16] demonstrated that similar pages could also be consolidated. In this context,

two pages are similar if the difference between them can be represented by an xdelta patch file that

is smaller than 2kB.

In addition to virtualization, content duplication has been effectively exploited in other domains. In

context of data storage, reducing storage requirements in primary and archival data storage applications

by eliminating duplicate data blocks has been widely studied [40, 41]. Kernel Shared Memory (KSM)

allows duplicate memory to be consolidated in Linux with or without virtualization [1].

A number of resilience techniques have been explored for HPC. Traditional checkpoint/restart [10,

11] is the most common approach. Asynchronous checkpointing [15, 21] and replication [13] have

also been considered. In addition to these system-level approaches, algorithm-based techniques for

enabling applications to withstand memory errors have been explored [5,8]. In contrast, our approach

will allow the system to transparently recover from memory errors without requiring application restart

or detailed application knowledge.

6 Conclusion and Future Work

In this paper, we have described a novel approach for improving system resilience by exploiting sim-

ilarities in system memory. We have also demonstrated the feasibility of this approach by presenting

data indicating that significant similarity exists in several important HPC applications. We draw five

specific conclusions from the data and analysis presented here.

Exploiting Memory Similarity for Improved Resilience 29

6 CONCLUSION AND FUTURE WORK

• Significant similarity (greater than 35%) exists for several applications even with a conservative

patch size threshold. Given the extent of memory content similarity, if we assume that memory

errors are distributed uniformly over the virtual address space of an application, the approach

we propose has the potential to reduce the rate of memory-induced application failure by a

significant fraction.

• Most of the similarity and duplication comes from pages that are modified infrequently. This

suggests that the temporal overhead of our proposed approach may be manageable relative to

its protective benefit.

• For the applications that we considered, expanding the scope of the memory that we consider

to include a NUMA domain provides a very modest improvement. This effect is due to the fact

that the increase in duplicate pages is largely offset by a decrease in similar pages. Nonetheless,

there may be circumstances in which we should choose local, similar pages over remote, duplicate

pages. The costs and benefits of this trade-off will be explored more fully in our future work.

• Memory content similarity is not determined by the application alone. Even for a single applica-

tion, the degree to which application memory is comprised of duplicate and similar pages varies

significantly across inputs.

• Kernel memory in Linux and Kitten is comprised of a large fraction (greater than 85%) of similar

pages. Moreover, the associated storage costs are modest; the metadata would occupy a small

fraction (less than 10%) of memory.

While these results are promising, we do not yet have data showing the impact of this approach

on application runtime. However, based on existing work in memory de-duplication [4, 16] we are

optimistic that this overhead will be reasonable. For example, the application performance in systems

using the Difference Engine, which also exploits page similarity at runtime, is within 7% of native [16].

Exploiting Memory Similarity for Improved Resilience 30

6 CONCLUSION AND FUTURE WORK

Taken as a whole, these initial results suggest that using memory content similarity can be a very

effective technique for correcting errors in application memory. As a result, we intend to pursue this

idea further and to begin work on implementing a runtime that can, by exploiting memory content

similarity, reduce the rate at which memory errors lead to node failure.

Acknowledgments

The authors gratefully acknowledge a number of associates from Sandia National Laboratories and

university partners for their assistance in this work. First, we thank Kevin Pedretti at Sandia for his

help and support understanding the Kitten lightweight kernel. Second, we thank Courtenay Vaughan at

Sandia for his help in configuring the two CTH problems used in this work. We also thank Peter Dinda

of Northwestern University and Jack Lange of the University of Pittsburgh for their help configuring

our Palacious-based OS similarity test framework. Finally, we wish to thank Sandia’s Laboratory

Directed Research and Development (LDRD) office for their financial support of this work.

Authors’ Biographies

Scott Levy is a Ph.D. student in the Computer Science Department at the University of New Mexico and

an intern at Sandia National Laboratories. His research focuses on fault tolerance for next-generation

HPC systems.

Kurt B. Ferreira is a senior member of Sandia’s technical staff. He is an expert on system software and

resilience/fault-tolerance methods for extreme-scale, massively parallel, distributed-memory, scientific

computing systems. He has designed and developed innovative high-performance and resilient low-level

system software for a number of HPC platforms, including the Cray Red Storm (XT3) machine at

Sandia National Laboratories. His research interests include the design and construction of operat-

ing systems for massively parallel systems and innovative application- and system-level fault-tolerance

Exploiting Memory Similarity for Improved Resilience 31

REFERENCES REFERENCES

mechanisms for HPC.

Patrick G. Bridges is an associate professor in the Department of Computer Science at the University

of New Mexico. His research interests include operating system and network protocol design, virtual-

ization systems, and fault tolerance, particularly for high-performance computing systems.

Aidan P. Thompson is a member of the technical staff at Sandia National Laboratories, where he has

worked for 18 years. He holds a Ph.D. in Chemical Engineering from the University of Pennsylvania.

He is the main developer of the SNAP class of interatomic potentials, which use machine-learning

techniques to achieve quantum-level accuracy in classical molecular dynamics (MD) simulations. In

addition, he leads several efforts to apply large-scale MD simulations using advanced interatomic po-

tentials running on advanced computer architectures, most notably the ReaxFF potential for reactive

MD simulations of energetic materials.

Christian Trott is a research scientist in the Scalable Algorithms Group at Sandia National Labora-

tories. He received his PhD in theoretical physics at the University of Technology Ilmenau, Germany

in 2011. Christian is now focused on enabling the development of performance portable scientific code

for current and future many-core architectures.

References

[1] A. Arcangeli, I. Eidus, and C. Wright. Increasing memory density by using KSM. In Proceedings
of the Linux Symposium, 2009, Montreal, Quebec, pages 19–28, 2009.

[2] A. Bartók, M. Payne, R. Kondor, and G. Csányi. Gaussian approximation potentials: The
accuracy of quantum mechanics, without the electrons. Physical Review Letters, 104(13):136403,
2010.

[3] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod,
K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, P. Kogge, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick. Exascale computing study:
Technology challenges in achieving exascale systems. http://www.science.energy.gov/ascr/
Research/CS/DARPA/exascale-hardware(2008).pdf, Sept. 2008.

Exploiting Memory Similarity for Improved Resilience 32

REFERENCES REFERENCES

[4] S. Biswas, B. R. d. Supinski, M. Schulz, D. Franklin, T. Sherwood, and F. T. Chong. Exploiting
data similarity to reduce memory footprints. In Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, IPDPS ’11, pages 152–163, Washington, DC, USA,
2011. IEEE Computer Society.

[5] P. G. Bridges, M. Hoemmen, K. B. Ferreira, M. A. Heroux, P. Soltero, and R. Brightwell. Coop-
erative application/OS DRAM fault recovery. In Euro-Par 2011: Parallel Processing Workshops,
pages 241–250. Springer, 2012.

[6] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running commodity operating
systems on scalable multiprocessors. ACM Trans. Comput. Syst., 15(4):412–447, Nov. 1997.

[7] V. Chandra and R. Aitken. Impact of technology and voltage scaling on the soft error susceptibility
in nanoscale CMOS. In Defect and Fault Tolerance of VLSI Systems, 2008. IEEE International
Symposium on, DFTVS’08, pages 114–122. IEEE, 2008.

[8] Z. Chen and J. Dongarra. Algorithm-based checkpoint-free fault tolerance for parallel matrix
computations on volatile resources. In Proceedings of the 2006 IEEE International Parallel &
Distributed Processing Symposium, IPDPS ’06, April 2006.

[9] Corbet. The SLUB allocator. http://lwn.net/Articles/229984/, Apr. 2007.

[10] E. Elnozahy and J. Plank. Checkpointing for peta-scale systems: A look into the future of practical
rollback-recovery. Dependable and Secure Computing, IEEE Transactions on, 1(2):97–108, 2004.

[11] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, Sept. 2002.

[12] K. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold. Libhashckpt: Hash-based in-
cremental checkpointing using GPUs. Recent Advances in the Message Passing Interface, pages
272–281, 2011.

[13] K. Ferreira, R. Riesen, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti, P. Bridges, D. Arnold,
and R. Brightwell. Evaluating the viability of process replication reliability for exascale systems.
In Proceedings of the ACM/IEEE International Conference on High Performance Computing,
Networking, Storage, and Analysis, (SC’11), Nov 2011.

[14] K. B. Ferreira, K. Pedretti, R. Brightwell, P. G. Bridges, D. Fiala, and F. Mueller. Evaluating op-
erating system vulnerability to memory errors. In Proceedings of the 2nd International Workshop
on Runtime and Operating Systems for Supercomputers, page 11. ACM, 2012.

[15] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello. Uncoordinated checkpointing
without domino effect for send-deterministic message passing applications. In Proceedings of the
2011 IEEE International Parallel and Distributed Processing Symposium, IPDPS ’11, May 2011.

[16] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M. Voelker, and A. Vah-
dat. Difference engine: Harnessing memory redundancy in virtual machines. Commun. ACM,
53(10):85–93, Oct. 2010.

Exploiting Memory Similarity for Improved Resilience 33

REFERENCES REFERENCES

[17] V. Henson and U. Yang. BoomerAMG: A parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(1):155–177, 2002.

[18] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams,
M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich. Improving performance via
mini-applications. Technical Report SAND2009-5574, Sandia National Laboratories, 2009.

[19] L. Holst. The general birthday problem. Random Structures and Algorithms, 6(2-3):201–208,
1995.

[20] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice: Understand-
ing the nature of DRAM errors and the implications for system design. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’12, pages 111–122, New York, NY, USA, 2012. ACM.

[21] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using asynchronous message
logging and checkpointing. In Proceedings of the Seventh Annual ACM Symposium on Principles
of Distributed Computing, pages 171–181, 1988.

[22] A. Kleen. Mcelog: Memory error handling in user space. In Proceedings of Linux Kongress 2010,
Nuremburg, Germany, September 2010.

[23] J. R. Lange, K. T. Pedretti, T. Hudson, P. A. Dinda, Z. Cui, L. Xia, P. G. Bridges, A. Gocke,
S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios and kitten: New high performance
operating systems for scalable virtualized and native supercomputing. In Proceedings of the 2010
IEEE International Parallel and Distributed Processing Symposium, IPDPS’10, pages 1–12, 2010.

[24] Lawrence Livermore National Laboratories. IRS: Implicit Radiation Solver 1.4 Build
Notes. https://asc.llnl.gov/computing resources/purple/archive/benchmarks/irs/

irs.readme.html.

[25] Lawrence Livermore National Laboratories. SAMRAI. https://computation.llnl.gov/casc/
SAMRAI/index.html.

[26] Lawrence Livermore National Laboratories. ASC Sequoia Benchmark Codes. https://

asc.llnl.gov/sequoia/benchmarks, August 2009.

[27] Los Alamos National Laboratories. Sweep3d. http://www.c3.lanl.gov/pal/software/sweep3d/
sweep3d readme.html, 1999.

[28] J. McGlaun, S. Thompson, and M. Elrick. CTH: A three-dimensional shock wave physics code.
International Journal of Impact Engineering, 10(1):351–360, 1990.

[29] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. June 2013 — TOP500 Supercomputer
Sites. http://top500.org/lists/2013/06/, June 2013.

Exploiting Memory Similarity for Improved Resilience 34

REFERENCES REFERENCES

[30] K. Noyes. 94 Percent of the World’s Top 500 Supercomputers Run Linux. http:

//www.linux.com/news/enterprise/high-performance/147-high-performance/666669-
94-percent-of-the-worlds-top-500-supercomputers-run-linux-, Nov. 2012.

[31] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A. B. Maccabe, P. M. Widener, and K. Fer-
reira. Designing and implementing lightweight kernels for capability computing. Concurrency and
Computation: Practice and Experience, 21(6):793–817, Apr. 2009.

[32] Sandia National Laboratories. Mantevo. http://software.sandia.gov/mantevo.

[33] Sandia National Laboratories. The LAMMPS molecular dynamics simulator. http://

lammps.sandia.gov, April 2010.

[34] Sandia National Laboratories. Kitten lightweight kernel. https://software.sandia.gov/trac/
kitten, March 10 2012.

[35] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance computing
systems. In Proceedings of the International Conference on Dependable Systems and Networks,
DSN ’06, June 2006.

[36] A. Tuininga. Cx bsdiff. http://starship.python.net/crew/atuining/cx bsdiff/index.html,
February 2006.

[37] C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, and K. Pedretti. Investigating the impact of the
Cielo Cray XE6 architecture on scientific application codes. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 1831–
1837. IEEE, 2011.

[38] C. A. Waldspurger. Memory resource management in VMware ESX server. SIGOPS Oper. Syst.
Rev., 36(SI):181–194, Dec. 2002.

[39] L. Xia and P. A. Dinda. A case for tracking and exploiting inter-node and intra-node memory
content sharing in virtualized large-scale parallel systems. In Proceedings of the 6th International
Workshop on Virtualization Technologies in Distributed Computing, VTDC ’12, pages 11–18, New
York, NY, USA, 2012. ACM.

[40] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan. DEBAR: A scalable high-performance
de-duplication storage system for backup and archiving. In Parallel & Distributed Processing,
2010 IEEE International Symposium on, IPDPS ’10, pages 1–12. IEEE, 2010.

[41] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain deduplication
file system. In Proceedings of the 6th USENIX Conference on File and Storage Technologies,
FAST ’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

Exploiting Memory Similarity for Improved Resilience 35

